Macrophage Depletion Protects against Cigarette Smoke-Induced Inflammatory Response in the Mouse Colon and Lung
نویسندگان
چکیده
Cigarette smoke (CS) is considered as a major risk factor for pulmonary and intestinal inflammation. CS leads to macrophage infiltration in the mucosae of the lung and colon, inducing the uncontrolled secretion of inflammatory mediators, and thus promoting inflammatory response. In this study, we investigated whether macrophage depletion modulates cigarette smoke (CS)-induced inflammatory response in both the lung and colon. The mice were exposed to CS for 30 min, after which they were rested in a fresh air environment for 30 min. The total duration of exposure to CS was 2 h per day for 4 weeks. Macrophage depletion state was made with the injection of clodronate containing liposome. Individual body weights were measured twice a week, and the mice were sacrificed on day 28. Hematoxylin and eosin (H&E) staining was performed in the lung and colon tissue to determine histological changes. Inflammatory mediators' synthesis was analyzed using ELISA and western blotting. Clodronate liposome treatment ameliorated pathological changes associated with the infiltration of immune cells in the lung and colon. Also, clodronate liposome injected mice showed significantly lower level of inflammatory mediators, including cytokines and chemokine and proteases. Our results indicated that macrophage depletion by clodronate liposome treatment attenuates CS-induced inflammatory response in both the lung and colon.
منابع مشابه
Glutathione peroxidase-1 protects against cigarette smoke-induced lung inflammation in mice.
Reactive oxygen species (ROS) produced from cigarette smoke cause oxidative lung damage including protein denaturation, lipid peroxidation, and DNA damage. Glutathione peroxidase-1 (gpx-1) is a detoxifying enzyme that may protect lungs from such damage. The aim of this study was to determine whether gpx-1 protects the lung against oxidative stress-induced lung inflammation in vivo. Male wild-ty...
متن کاملDisruption of pulmonary lipid homeostasis drives cigarette smoke-induced lung inflammation in mice.
Overwhelming evidence links inflammation to the pathogenesis of smoking-related pulmonary diseases, especially chronic obstructive pulmonary disease (COPD). Despite an increased understanding of the disease pathogenesis, mechanisms initiating smoking-induced inflammatory processes remain incompletely understood. To investigate the mechanisms that initiate and propagate smoke-induced inflammatio...
متن کاملInduction of pulmonary antibodies against oxidized lipids in mice exposed to cigarette smoke
BACKGROUND Chronic cigarette smoke exposure is known to activate the adaptive immune system; however, the functional role of these processes is currently unknown. Given the role of oxidized lipids in driving innate inflammatory responses to cigarette smoke, we investigated whether an adaptive immune response against damaged lipids was induced following chronic cigarette smoke exposure. METHOD...
متن کاملChinese green tea consumption reduces oxidative stress, inflammation and tissues damage in smoke exposed rats
Objective(s):One cause of cigarette smoking is oxidative stress that may alter the cellular antioxidant defense system, induce apoptosis in lung tissue, inflammation and damage in liver, lung, and kidney. It has been shown that Chinese green tea (CGT) (Lung Chen Tea) has higher antioxidant property than black tea. In this paper, we will explore the preventive effect of CGT on cigarette smoke-in...
متن کاملT cell depletion protects against alveolar destruction due to chronic cigarette smoke exposure in mice.
The role of T cells in chronic obstructive pulmonary disease (COPD) is not well understood. We have previously demonstrated that chronic cigarette smoke exposure can lead to the accumulation of CD4(+) and CD8(+) T cells in the alveolar airspaces in a mouse model of COPD, implicating these cells in disease pathogenesis. However, whether specific inhibition of T cell responses represents a therap...
متن کامل